Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Redox Biol ; 48: 102171, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34736121

RESUMEN

Therapeutic potential of metformin in obese/diabetic patients has been associated to its ability to combat insulin resistance. However, it remains largely unknown the signaling pathways involved and whether some cell types are particularly relevant for its beneficial effects. M1-activation of macrophages by bacterial lipopolysaccharide (LPS) promotes a paracrine activation of hypoxia-inducible factor-1α (HIF1α) in brown adipocytes which reduces insulin signaling and glucose uptake, as well as ß-adrenergic sensitivity. Addition of metformin to M1-polarized macrophages blunted these signs of brown adipocyte dysfunction. At the molecular level, metformin inhibits an inflammatory program executed by HIF1α in macrophages by inducing its degradation through the inhibition of mitochondrial complex I activity, thereby reducing oxygen consumption in a reactive oxygen species (ROS)-independent manner. In obese mice, metformin reduced inflammatory features in brown adipose tissue (BAT) such as macrophage infiltration, proinflammatory signaling and gene expression, and restored the response to cold exposure. In conclusion, the impact of metformin on macrophages by suppressing a HIF1α-dependent proinflammatory program is likely responsible for a secondary beneficial effect on insulin-mediated glucose uptake and ß-adrenergic responses in brown adipocytes.

2.
Medicina (B Aires) ; 81(3): 346-358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34137693

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver tumor. Hexachlorobenzene (HCB) is an endocrine disruptor and a liver tumor promoter. Deregulation of thyroid hormone (TH) homeostasis may play a significant role in early neoplastic transformation. The aim of this study was to evaluate the relation between TH metabolism and the regulation of cell growth in an in vivo and in vitro model. We examined the role of transforming growth factor-ß1 (TGF-ß1) on TH deiodinase expression and hepatocyte proliferation. An initiation (DEN)/promotion (HCB) tumor model from rat liver and HepG2 cells were used. We evaluated PCNA, p21, p27, SMAD2/3, TGF-ß1, deiodinase 1 (D1), D3, protein expression levels; D1 and D3 mRNA expression; TH and TGF-ß1, D1, D3, and GST-P protein levels in focal/non-focal areas. In vivo, HCB decreased triiodothyronine (T3) and D1 mRNA levels and increased thyroxine (T4) and D3 mRNA levels in liver from DEN+HCB vs. DEN group. HCB increased protein levels from D3, TGF-ß1, and PCNA and decreased D1 in focal-areas. In vitro, HCB increased PCNA, pSMAD 2/3, and TGF-ß1 protein levels and mRNA expression and decreased p21 and p27 protein levels. Exogenous T3 treatment prevent HCB induced molecular alterations related to hepatocyte proliferation whereas T4 did not have any effect. These effects were prevented by using a TGF-ß1 receptor II inhibitor. Results suggest that alteration of TH homeostasis, through D1 function, play a key role in hepatocyte proliferation and that TGF-ß1-SMAD pathway is involved in this process confirming their role in early neoplastic transformation in HCC.


El hepatocarcinoma (HCC) es un tumor hepático primario. El hexaclorobenceno (HCB) es un disruptor endocrino y un promotor de tumores hepáticos. La desregulación de la homeostasis de las hormonas tiroideas (HT) puede ser un proceso importante para la transformación neoplásica temprana. Nuestro objetivo fue evaluar la relación entre el metabolismo de las HT y la regulación de la proliferación celular. Se utilizó un modelo tumoral de iniciación (DEN)/promoción (HCB) de hígado de rata (in vivo) (DEN/HCB) y células HepG2 (in vitro). Evaluamos los niveles de PCNA, p21, p27, SMAD2/3, TGF-ß1, D1, D3, ARNm de D1 y D3, HT y los niveles de TGF-ß1, D1, D3 y GST-P en áreas focales/no focales. In vivo, HCB disminuyó los niveles de T3 y ARNm de la D1 y aumentó los niveles de T4 y ARNm de D3 del grupo DEN + HCB frente al grupo DEN. El HCB aumentó los niveles de D3, TGF-ß1 y PCNA y disminuyó el D1 en las áreas focales. In vitro, HCB aumentó los niveles de PCNA, pSMAD 2/3 y TGF-ß1 y la expresión de ARNm mientras que disminuyó los niveles de p21 y p27. El tratamiento con T3 exógeno previno las alteraciones moleculares relacionadas con la proliferación hepatocitaria. Estos efectos se evitaron utilizando un inhibidor del receptor II de TGF-ß1. Los resultados sugieren que la alteración de la homeostasis de HT, a través de la D1 y la vía TGF-ß1-SMAD, juega un papel clave en la proliferación celular y en las transformaciones neoplásicas tempranas en el HCC.


Asunto(s)
Carcinoma Hepatocelular , Yoduro Peroxidasa , Neoplasias Hepáticas , Factor de Crecimiento Transformador beta1 , Animales , Proliferación Celular , Yoduro Peroxidasa/genética , Ratas
3.
Mol Metab ; 42: 101097, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049408

RESUMEN

OBJECTIVE: Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and ß-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS: The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS: BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS: This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and ß-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sirtuina 1/metabolismo , Adipocitos/metabolismo , Adipocitos/fisiología , Adipocitos Marrones/metabolismo , Adipocitos Marrones/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Metabolismo Energético , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Inflamación/prevención & control , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Obesidad/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sirtuina 1/genética , Sirtuina 1/fisiología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
4.
Sci Rep ; 10(1): 12317, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704052

RESUMEN

The contribution of the nucleotide-binding oligomerization domain protein NOD1 to obesity has been investigated in mice fed a high fat diet (HFD). Absence of NOD1 accelerates obesity as early as 2 weeks after feeding a HFD. The obesity was due to increases in abdominal and inguinal adipose tissues. Analysis of the resting energy expenditure showed an impaired function in NOD1-deficient animals, compatible with an alteration in thyroid hormone homeostasis. Interestingly, free thyroidal T4 increased in NOD1-deficient mice fed a HFD and the expression levels of UCP1 in brown adipose tissue were significantly lower in NOD1-deficient mice than in the wild type animals eating a HFD, thus contributing to the observed adiposity in NOD1-deficient mice. Feeding a HFD resulted in an alteration of the proinflammatory profile of these animals, with an increase in the infiltration of inflammatory cells in the liver and in the white adipose tissue, and an elevation of the circulating levels of TNF-α. In addition, alterations in the gut microbiota in NOD1-deficient mice correlate with increased vulnerability of their ecosystem to the HFD challenge and affect the immune-metabolic phenotype of obese mice. Together, the data are compatible with a protective function of NOD1 against low-grade inflammation and obesity under nutritional conditions enriched in saturated lipids. Moreover, one of the key players of this early obesity onset is a dysregulation in the metabolism and release of thyroid hormones leading to reduced energy expenditure, which represents a new role for these hormones in the metabolic actions controlled by NOD1.


Asunto(s)
Dieta Alta en Grasa , Conducta Alimentaria , Microbioma Gastrointestinal , Homeostasis , Proteína Adaptadora de Señalización NOD1/deficiencia , Hormonas Tiroideas/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/patología , Animales , Biodiversidad , Peso Corporal , Hígado Graso/patología , Prueba de Tolerancia a la Glucosa , Inflamación/patología , Intestinos/patología , Lípidos/química , Hígado/patología , Metabolómica , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/metabolismo , Obesidad/sangre , Obesidad/microbiología , Obesidad/patología , Glándula Tiroides/patología , Glándula Tiroides/fisiopatología , Hormonas Tiroideas/sangre
5.
Aging Cell ; 18(3): e12948, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920127

RESUMEN

Age-related increased adiposity is an important contributory factor in the development of insulin resistance (IR) and is associated with metabolic defects. Caloric restriction (CR) is known to induce weight loss and to decrease adiposity while preventing metabolic risk factors. Here, we show that moderate 20% CR delays early deleterious effects of aging on white and brown adipose tissue (WAT and BAT, respectively) function and improves peripheral IR. To elucidate the role of CR in delaying early signs of aging, young (3 months), middle-aged (12 months), and old (20 months) mice fed al libitum and middle-aged and old mice subjected to early-onset CR were used. We show that impaired plasticity of subcutaneous WAT (scWAT) contributes to IR, which is already evident in middle-aged mice. Moreover, alteration of thyroid axis status with age is an important factor contributing to BAT dysfunction in middle-aged animals. Both defects in WAT and BAT/beige cells are ameliorated by CR. Accordingly, CR attenuated the age-related decline in scWAT function and decreased the extent of fibro-inflammation. Furthermore, CR promoted scWAT browning. In brief, our study identifies the contribution of scWAT impairment to age-associated metabolic dysfunction and identifies browning in response to food restriction, as a potential therapeutic strategy to prevent the adverse metabolic effects in middle-aged animals.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Envejecimiento/metabolismo , Restricción Calórica , Animales , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones de la Cepa 129 , Tomografía Computarizada por Tomografía de Emisión de Positrones
6.
Diabetologia ; 62(1): 123-135, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327824

RESUMEN

AIMS/HYPOTHESIS: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis. METHODS: To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months). Metabolic cages were used to investigate the respiratory exchange ratio and energy expenditure, at both 24°C and 30°C. Undifferentiated immortalised mouse brown adipocytes (mBAs) were treated with 0.1 µg/ml pleiotrophin until day 6 of differentiation, and markers of mBA differentiation were analysed by quantitative real-time PCR (qPCR). RESULTS: Ptn deletion was associated with a reduction in total body fat (20.2% in Ptn+/+ vs 13.9% in Ptn-/- mice) and an enhanced lipolytic response to isoprenaline in isolated adipocytes from 15-month-old mice (189% in Ptn+/+ vs 273% in Ptn-/- mice). We found that Ptn-/- mice exhibited a significantly lower QUICKI value and an altered lipid profile; plasma triacylglycerols and NEFA did not increase with age, as happens in Ptn+/+ mice. Furthermore, the contribution of cold-induced thermogenesis to energy expenditure was greater in Ptn-/- than Ptn+/+ mice (42.6% and 33.6%, respectively). Body temperature and the activity and expression of deiodinase, T3 and mitochondrial uncoupling protein-1 in the brown adipose tissue of Ptn-/- mice were higher than in wild-type controls. Finally, supplementing brown pre-adipocytes with pleiotrophin decreased the expression of the brown adipocyte markers Cidea (20% reduction), Prdm16 (21% reduction), and Pgc1-α (also known as Ppargc1a, 11% reduction). CONCLUSIONS/INTERPRETATION: Our results reveal for the first time that pleiotrophin is a key player in preserving insulin sensitivity, driving the dynamics of adipose tissue lipid turnover and plasticity, and regulating energy metabolism and thermogenesis. These findings open therapeutic avenues for the treatment of metabolic disorders by targeting pleiotrophin in the crosstalk between white and brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Metabolismo Energético/fisiología , Termogénesis/fisiología , Animales , Proteínas Portadoras/genética , Citocinas/genética , Metabolismo Energético/genética , Femenino , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Estudios Longitudinales , Ratones , Ratones Noqueados , Termogénesis/genética
7.
Front Neuroanat ; 12: 31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755326

RESUMEN

Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.

8.
Cereb Cortex ; 28(5): 1783-1793, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407057

RESUMEN

Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.


Asunto(s)
Corteza Cerebral , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Hormonas Tiroideas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/fisiología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Femenino , Edad Gestacional , Yoduro Peroxidasa/deficiencia , Yoduro Peroxidasa/genética , Isótopos de Yodo/metabolismo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos , Embarazo , ARN Mensajero/metabolismo , Simportadores , Hormonas Tiroideas/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Yodotironina Deyodinasa Tipo II
9.
Thyroid ; 27(8): 1092-1098, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28605984

RESUMEN

BACKGROUND: The possibility that the intrinsic genomic activity of thyroxine (T4) is of physiological relevance has been frequently hypothesized. It might explain gene expression patterns in the brain found in type 2-deiodinase (Dio2)-deficient mice. These mice display normal expression of most thyroid hormone-dependent genes, despite decreased brain triiodothyronine (T3). METHODS: The relative effects of T4 and T3 on gene expression were analyzed in mouse neuro-2a (N2a) cells stably expressing the thyroid hormone receptor α1, and in primary mouse cerebrocortical cells enriched in astrocytes or in neurons. Cortical cells were derived from Dio2-deficient mice to prevent conversion of T4 to T3. T4 and T3 were measured in the media at the beginning and end of incubation, and T4 and T3 antibodies were used to block T4 and T3 action. RESULTS: In all cell types, T4 had intrinsic genomic activity. In N2a cells, T4 activity was higher on negative regulation (1/5th of T3 activity) than on positive regulation (1/40th of T3 activity). T4 activity on positive regulation was dependent on the cell context, and was higher in primary cells than in N2a cells. CONCLUSION: T4 has intrinsic genomic activity. Positive regulation depends on the cell context, and primary cells appear much more sensitive than neuroblastoma cells. In all cells, negative regulation is more sensitive to T4 than positive regulation. These properties may explain the mostly normal gene expression in the brain of Dio2-deficient mice.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Tiroxina/metabolismo , Animales , Astrocitos/citología , Astrocitos/enzimología , Proteínas Aviares/agonistas , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Pollos , Embrión de Mamíferos/citología , Regulación Neoplásica de la Expresión Génica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuronas/citología , Neuronas/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptores alfa de Hormona Tiroidea/agonistas , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Yodotironina Deyodinasa Tipo II
10.
Biochim Biophys Acta ; 1861(12 Pt A): 1929-1941, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27686967

RESUMEN

New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Glucosa/metabolismo , Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proteína Desacopladora 1/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Termogénesis/efectos de los fármacos
11.
PLoS One ; 11(7): e0159399, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27438137

RESUMEN

The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Metabolismo Energético/genética , Mitocondrias/metabolismo , Obesidad/genética , Proteína Desacopladora 1/genética , Adipocitos Marrones/metabolismo , Adipocitos Marrones/patología , Animales , Carnitina O-Palmitoiltransferasa/biosíntesis , Diferenciación Celular/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Lípidos/genética , Lipólisis/genética , Mitocondrias/patología , Obesidad/metabolismo , Obesidad/patología , Ratas , Termogénesis/genética , Proteína Desacopladora 1/biosíntesis
12.
Mol Cell Endocrinol ; 428: 58-67, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26994513

RESUMEN

Triiodothyronine (T3) is important for thermogenesis in brown adipose tissue (BAT). Type II deiodinase (DIO2) produces T3 required for intracellular needs in BAT. Brown adipocytes in culture require T3 for the adrenergic stimulation of DIO2. Glucocorticoids induce adipocyte differentiation (lipogenesis). We investigated the regulation of DIO2 activity, Dio2 mRNA and Dio2 promoter activity by glucocorticoids in primary cultures of rat brown adipocytes using dexamethasone (DEX) and hydrocortisone (HC). DEX and HC regulated the adrenergic stimulation of DIO2 activity in a dose- and time-dependent manner, inhibiting DIO2 activity at short treatment times and large doses (1-10 µM) and stimulating DIO2 at low HC doses (1-100 nM) and longer times (DEX). Insulin depletion reduced DIO2 activity but the response to glucocorticoids remained unchanged. DEX and HC inhibited basal DIO2 activity. DEX had no effect on DIO2 half-life, whereas HC stabilized DIO2 activity. DEX and HC inhibited the adrenergic stimulation of Dio2 mRNA expression (100-10000 nM, 14-96 h), but stabilized Dio2 mRNA, particularly DEX. DEX increased basal Dio2 mRNA levels, possibly through stabilization of Dio2 mRNA. An 807 bp construct of the murine Dio2 proximal promoter showed maximal reporter activity, with the cAMP response element (CRE) essential for transcriptional activity. DEX caused inhibition in most constructs containing the CRE element whereas HC stimulated reporter activity in the 807 bp construct. Glucocorticoids inhibited the adrenergic stimulation of Dio2 at the transcriptional level in brown adipocytes, although DIO2 activity increased with HC, possibly due to stabilization of Dio2 activity and mRNA. The CRE and cEBP elements of the Dio2 promoter seem involved in the regulation by glucocorticoids.


Asunto(s)
Adipocitos Marrones/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Yoduro Peroxidasa/genética , Regiones Promotoras Genéticas , Adipocitos Marrones/efectos de los fármacos , Animales , Células Cultivadas , Dexametasona/farmacología , Semivida , Hidrocortisona/farmacología , Yoduro Peroxidasa/metabolismo , Ratones , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteína Desacopladora 1/metabolismo
13.
Thyroid ; 26(5): 618-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26701289

RESUMEN

BACKGROUND: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone-specific cell membrane transporter. Mutations in the MCT8 gene lead to profound psychomotor retardation and abnormal thyroid hormone serum levels with low thyroxine (T4) and high triiodothyronine (T3). Currently, therapeutic options for patients are limited. Triiodothyroacetic acid (TRIAC) has potential therapeutic value. The aim of this study was to evaluate the effects and efficacy of therapeutic doses of TRIAC on Mct8-deficient mice (Mct8KO). METHODS: Wild-type (Wt) and Mct8KO mice were treated with 30 ng TRIAC/g of body weight/day, given in drinking water, from postnatal day 21 to 30. TRIAC, T4 and T3 levels in plasma, as well as T3 and TRIAC content in the cerebral cortex and striatum were measured by specific radioimmunoassays. The activities of deiodinases 1 and 2 were measured in liver and cortex. The effect of TRIAC treatment in the expression of T3-dependent genes was measured in the heart, cerebral cortex, and striatum. RESULTS: Plasma TRIAC concentration were the same in Wt and Mct8KO animals after treatment. TRIAC treatment greatly decreased plasma T4 in Wt and Mct8KO mice, and reduced T3 to normal levels in the Mct8KO mice. Deiodinase 1 activity and gene expression in the liver increased, while it did not have any effect on the expression of Serca2a in the heart. TRIAC treatment did not induce the expression of T3-dependent genes in the cerebral cortex or striatum, but further decreased expression of Flywch2 in the cortex and Aldh1a1 and Flywch2 in the striatum. Direct measurements of TRIAC and T3 content in the cortex and striatum revealed a decrease in T3 after treatment with no significant increase in the level of endogenous TRIAC. CONCLUSIONS: Therapeutic doses of TRIAC in Mct8KO mice restored plasma T3 levels but severely decreased T4 levels. TRIAC has a direct effect on deiodinase 1 in the liver and does not have an effect on gene expression in the heart. The increase in the plasma TRIAC levels after treatment is not sufficient to increase TRIAC levels in the brain and to promote the expression of T3-dependent genes in brain cells. Instead, it leads to a state of brain hypothyroidism with reduced T3 content.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Tiroxina/sangre , Triyodotironina/análogos & derivados , Triyodotironina/sangre , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Yoduro Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Simportadores , Triyodotironina/farmacología
14.
Front Neuroanat ; 9: 9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25741243

RESUMEN

Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.

15.
Mol Cell Endocrinol ; 404: 151-8, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25662278

RESUMEN

TSH receptor (TSHR) is present in the thyroid and other tissues, as adipose tissue. In brown adipose tissue (BAT) TSH increases UCP1 expression and lipolysis. We have studied the regulation of Tshr mRNA expression and the effect of TSH on Ucp1 and Dio2 mRNA, on D2 activity and O2 consumption in rat brown adipocytes and the TSH signaling pathways. Tshr increased during brown adipocyte differentiation, was up-regulated by insulin and low TSH concentrations and down-regulated by high TSH concentrations, T3 and/or NE. TSH increased basal Ucp1 mRNA in a dose-dependent way acting synergistically with T3, while had no effect when NE was present. High TSH concentrations increased basal Dio2 mRNA (12-fold) and were synergistic with T3 (100-fold), but decreased Dio2 mRNA in T3+NE-treated cells. TSH increased D2 activities in T3-treated cells and inhibition of ERK pathway decreased the TSH effect by 55%. In T3+NE treated-cells TSH decreased D2 activity by 50%, in a dose-dependent manner. TSH activated Akt and Erk phosphorylation, while inhibition of PKA promoted Akt phosphorylation. TSH inhibited leptin mRNA. TSH increased O2 consumption by 20% and T3 enhanced its effect. Tshr is expressed in brown adipocytes and is regulated by insulin, TSH, T3 and NE. TSH increases basal and T3-stimulated Ucp1 and Dio2 expression and D2 activity only when T3 is present, but decreases Dio2 mRNA and D2 activity stimulated by NE+T3. TSH increases O2 consumption, confirming the role of TSH in the maintenance of thermogenesis.


Asunto(s)
Adipocitos Marrones/citología , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Termogénesis/efectos de los fármacos , Tirotropina/farmacología , Adipocitos Marrones/efectos de los fármacos , Animales , Diferenciación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Insulina/farmacología , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Canales Iónicos/genética , Leptina/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Mitocondriales/genética , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteína Desacopladora 1 , Yodotironina Deyodinasa Tipo II
16.
Environ Res ; 136: 413-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25460663

RESUMEN

Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies.


Asunto(s)
Halógenos/análisis , Yoduro Peroxidasa/metabolismo , Compuestos Orgánicos/análisis , Hormonas Tiroideas/metabolismo , Ursidae , Contaminantes Químicos del Agua/análisis , Animales , Groenlandia , Halógenos/toxicidad , Yoduro Peroxidasa/sangre , Compuestos Orgánicos/toxicidad , Hormonas Tiroideas/sangre , Contaminantes Químicos del Agua/toxicidad
17.
PLoS One ; 9(8): e103857, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083788

RESUMEN

BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Animales , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Marcha/genética , Marcha/fisiología , Yoduro Peroxidasa/genética , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo
18.
PLoS One ; 9(5): e96915, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24819605

RESUMEN

Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Corteza Cerebral/metabolismo , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Hipertiroidismo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Animales , Animales Recién Nacidos , Femenino , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/genética , Hipertiroidismo/genética , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Transportadores de Ácidos Monocarboxílicos , Simportadores , Triyodotironina/metabolismo
20.
Endocrinology ; 155(2): 635-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24265449

RESUMEN

Thyroid epithelial cells, or thyrocytes, express functional thyroid hormone receptors but no precise role has yet been assigned to either TRα or TRß in the thyroid gland. In this study, we analyzed the impact of inactivating the TRß gene in the thyroid of mice. First, we generated a mouse line named Thyr-Cre, expressing the Cre recombinase under the control of the thyroglobulin gene promoter, which led to a complete recombination of floxed genes in thyrocytes. Thyr-Cre mice were then crossed with TRß floxed mice (TRß(flox/flox)) to obtain a thyrocyte-selective deletion of TRß. Thyr-TRß(-/-) mice were characterized by a decrease in the size and functional activity of the thyroid gland. These alterations were associated with a decrease in plasma TSH concentration. Surprisingly, Thyr-TRß(-/-) displayed elevated serum T(4) and rT(3) concentrations with no significant change in serum T(3) levels. Their intrathyroidal free T(4) and rT(3) contents were also elevated, whereas the ratio of serum T(4) to thyroid free T(4) was decreased by comparison with wild-type littermates. Also, within the thyroid, deiodinases D1 and D2 were reduced as well as the expression levels of genes encoding monocarboxylate transporters (Mct8 and Mct10). Such a decrease in intrathyroidal deiodination of T(4) and in the expression of genes encoding thyroid hormone transporters may contribute to the primary overproduction of T(4) observed in Thyr-TRß(-/-) mice. In conclusion, these data show that the control of thyroid hormone production involves not only TRß-dependent mechanisms acting at the level of hypothalamus and pituitary but also TRß-dependent mechanisms acting at the thyroid level.


Asunto(s)
Glándula Tiroides/metabolismo , Receptores beta de Hormona Tiroidea/genética , Hormonas Tiroideas/biosíntesis , Tirotropina/sangre , Animales , Regulación de la Expresión Génica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Transportadores de Ácidos Monocarboxílicos , Regiones Promotoras Genéticas , Simportadores , Glándula Tiroides/citología , Receptores beta de Hormona Tiroidea/metabolismo , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...